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14.1 Overview

 

The TIMSS achievement test design makes use of matrix-sam-
pling techniques to divide the assessment item pool so that each 
sampled student responds to just a portion of the items, thereby 
achieving wide coverage of the mathematics and science subject 
areas while keeping the response burden on individual students 
to a minimum.

 

1

 

 TIMSS relies on a sophisticated form of psycho-
metric scaling known as IRT (Item Response Theory) scaling to 
combine the student responses in a way that provides accurate 
estimates of achievement. The TIMSS IRT scaling uses the multi-
ple imputation or “plausible values” method to obtain proficiency 
scores in mathematics and science and their content areas for all 
students, even though each student responded to only a part of 
the assessment item pool.

This chapter first reviews the psychometric models used in scal-
ing the TIMSS 1999 data, and the multiple imputation or “plausi-
ble values” methodology that allows such models to be used with 
sparse item-sampling in order to produce proficiency scale values 
of respondents. Next, the procedures followed in applying these 
models to the TIMSS 1999 data are described.

 

14.2 TIMSS 1999 
Scaling Methodology

 

The psychometric models used in the TIMSS analysis are not new. 
A similar model has been used in the field of educational measure-
ments since the 1950s and the approach has been even more pop-
ular since the 1970s in large-scale surveys, test construction, and 
computer adaptive testing.

 

2

 

 (Birnbaum, 1968; Lord and Novick, 
1968; Lord, 1980; Van Der Linden and Hambleton,1996).

Three distinct scaling models, depending on item type and scor-
ing procedure, were used in the analysis of the 1999 TIMSS 
assessment data. Each is a “latent variable” model that describes 
the probability that a student will respond in a specific way to an 

 

1.  The TIMSS 1999 achievement test design is described in Chapter 2. 
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item in terms of the respondent’s proficiency, which is an unob-
served or “latent” trait, and various characteristics (or “parame-
ters”) of the item. A three-parameter model was used with 
multiple-choice items, which were scored as correct or incorrect, 
and a two-parameter model for free-response items with just two 
response options, which also were scored as correct or incorrect. 
Since each of these item types has just two response categories, 
they are known as dichotomous items. A partial credit model was 
used with polytomous free-response items, i.e., those with more 
than two score points. 

 

14.2.1 Two- and Three- Parameter IRT Models for 
Dichotomous Items 

 

The fundamental equation of the three-parameter (3PL) model 
gives the probability that a person whose proficiency on a scale 

 

k

 

 
is characterized by the unobservable variable 

 

θ

 

 will respond cor-
rectly to item i:

 

(1)

 

where

 

x

 

i

 

is the response to item i, 1 if correct and 0 if incorrect;

 

θ

 

k

 

is the proficiency of a person on a scale k (note that a person 
with higher proficiency has a greater probability of respond-
ing correctly);

 

a

 

i

 

is the slope parameter of item i, characterizing its discriminat-
ing power;

 

b

 

i

 

is its location parameter, characterizing its difficulty;

 

c

 

i 

 

is its lower asymptote parameter, reflecting the chances of 
respondents of very low proficiency selecting the correct answer.

 

2. Birnbaum, 1968; Lord and Novick, 1968; Lord, 1980; Van Der Linden and Hambleton, 
1996. The theoretical underpinning of the imputed value methodology was developed 
by Rubin (1987), applied to large-scale assessment by Mislevy (1991), and studied fur-
ther by Mislevy, Johnson and Muraki (1992) and Beaton and Johnson (1992). Other 
researchers have published widely on related aspects of the methodology; see, for 
example, Dempster, Laird, and Rubin (1977); Little and Rubin (1983, 1987); Andersen 
(1980); Engelen (1987); Hoijtink (1991); Laird (1978); Lindsey, Clogg, and Grego 
(1991); Zwinderman (1991); Tanner and Wong (1987); and Rubin (1987, 1991). The 
procedures used in TIMSS have also been used in several other large-scale surveys, 
including the U.S. National Assessment of Educational Progress (NAEP), the U.S. 
National Adult Literacy Survey (NALS), the International Adult Literacy Survey (IALS), 
and the International Adult Literacy and Life Skills Survey (IALLS).

P xi 1 θk ai bi ci, , ,=( ) ci

1 ci–( )

1.0 1.7ai– θk bi–( )( )exp+
------------------------------------------------------------------+=
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The probability of an incorrect response to the item is defined as

 

(2)

 

The two-parameter (2PL) model was used for the short free-
response items that were scored as correct or incorrect. The form 
of the 2PL model is the same as Equations (1) and (2) with the 

 

c

 

i

 

 
parameter fixed at zero.

The two- and three-parameter models were used in scaling the 
TIMSS 1999 data in preference to the one-parameter Rasch model 
used in TIMSS 1995, primarily because they can more accurately 
account for the differences among items in their ability to discrimi-
nate between students of high and low ability. With the Rasch 
model, all items are assumed to have the same discriminating 
power, while the 2PL and 3PL models provide an extra item 
parameter to account for differences among items in discriminat-
ing power. However, the accuracy of representing item response 
functions by 2PL and 3PL models does not come without cost. 
Since more item parameters must be estimated, larger amounts of 
data — and consequently larger sample sizes — are required to 
obtain the same degree of confidence in the estimated item 
parameters. However, the TIMSS 1999 database is more than large 
enough to provide the required level of confidence.

Modeling item response functions as accurately as possible by 
using 2PL and 3PL models also reduces errors due to model mis-
specification. Any mathematical modeling of data without satu-
rated parameters contains errors not accounted for by the model. 
The error is apparent when the model cannot exactly reproduce 
or predict the data using the estimated parameters. The differ-
ence between the observed data and those generated by the 
model is directly proportional to the degree of model mis-specifi-
cation. Current psychometric convention does not allow model 
mis-specification errors to be represented in the proficiency 
scores. Instead, once item response parameters are estimated, 
they are treated as given and model mis-specification is ignored. 
For that reason it is preferable to use models that characterize 
the item response function as well as possible.

Pi0 P xi 1 θk ai bi ci, , ,=( )≡ 1 Pi1 θk( )–=
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14.2.2 The IRT Model for Polytomous Items 

 

In TIMSS 1999, free-response items requiring an extended 
response were scored for partial credit, with 0, 1, and 2 as the pos-
sible score levels. These polytomous items were scaled using a 
generalized partial credit model (Muraki, 1992). The fundamen-
tal equation of this model gives the probability that a person with 
proficiency 

 

θ

 

k

 

 on scale k will have, for the i-th item, a response 

 

x

 

i

 

 
that is scored in the l-th of 

 

m

 

i

 

 ordered score categories:

 

(3)

 

where

 

m

 

i

 

is the number of response categories for item i;

 

x

 

i

 

is the response to item i, possibilities ranging between 0 and 

 

m

 

i

 

-1;

 

θ

 

k

 

is the proficiency of person on a scale k;

 

a

 

i

 

is the slope parameter of item i, characterizing its discrimina-
tion power;

 

b

 

i

 

is its location parameter, characterizing its difficulty;

 

d

 

i,l

 

 is category 

 

l

 

 threshold parameter.

Indeterminacy of model parameters of the polytomous model are 
resolved by setting 

 

d

 

i,0

 

 =0 and setting

 

(4)

 

 .

For all of the IRT models there is a linear indeterminacy between 
the values of item parameters and proficiency parameters, i.e., 
mathematically equivalent but different values of item parameters 
can be estimated on an arbitrarily linearly transformed proficiency 
scale. This linear indeterminacy can be resolved by setting the ori-
gin and unit size of the proficiency scale to arbitrary constants, 
such as mean of 500 with standard deviation of 100. The indetermi-
nacy is most apparent when the scale is set for the first time. 

P xi l θk ai bi di 1, … di mi 1–,,,,,,=( )

1.7
v 0=

l

∑ ai θk bi di v,+–( )exp

1.7
v 0=
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di l,
l 1=

mi 1–

∑ 0=



 

Scaling Methodology and Procedures for the TIMSS Mathematics and Science Scales

241

 

IRT modeling relies on a number of assumptions, the most 
important being conditional independence. Under this assump-
tion, item response probabilities depend only on 

 

θ

 

κ

 

 

 

(a measure of 
proficiency) and the specified parameters of the item, and are 
unaffected by the demographic characteristics or unique experi-
ences of the respondents, the data collection conditions, or the 
other items presented in the test. Under this assumption, the 
joint probability of a particular response pattern 

 

x 

 

across a set of 
n items is given by: 

 

(5)

 

where 

 

Pil(θk) is of the form appropriate to the type of item 
(dichotomous or polytomous), mi is equal to 2 for the dichoto-
mously scored items, and uil is an indicator variable defined by

(6)

Replacing the hypothetical response pattern with the real scored 
data, the above function can be viewed as a likelihood function to 
be maximized by a given set of item parameters. In TIMSS 1999 
analyses, estimates of both dichotomous and polytomous item 
parameters were obtained by the NAEP BILOG/PARSCALE pro-
gram, which combines Mislevy and Bock’s (1982) BILOG and 
Muraki and Bock’s (1991) PARSCALE computer programs. The 
item parameters in each scale were estimated independently of 
the parameters of other scales. Once items were calibrated in this 
manner, a likelihood function for the proficiency θk was induced 
from student responses to the calibrated items. This likelihood 
function for the proficiency θk is called the posterior distribution 
of the θs for each respondent.

14.2.3 Evaluating Fit of IRT Models to the Data

The fit of the IRT models to the TIMSS 1999 data was examined 
within each scale by comparing the empirical item response func-
tions with the theoretical item response function curves (see 
Exhibits 14.1 and 14.2). The theoretical curves are plots of the 
response functions generated by the model using values of the 
item parameters estimated from the data. The empirical results 
are calculated from the posterior distributions of the θs for each 
respondent who received the item. For dichotomous items the 
plotted values are the sums of these individual posteriors at each 

P x θk item parameters,( ) Pil θk( )
uil

l 0=

mi 1–

∏
i 1=

n

∏=

Uil

1if response xi is in category l

0 otherwise.
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point on the proficiency scale for those students that responded 
correctly plus a fraction of the omitted responses, divided by the 
sum of the posteriors of all that were administered the item. For 
polytomous items, the sums for those who scored in the category 
of interest is divided by the sum for all those that were adminis-
tered the item.

Exhibit 14.1 TIMSS 1999 Grade 8 Science Assessment Example Item Response Function 
Dichotomous Item

Exhibit 14.2 TIMSS 1999 Grade 8 Science Assessment Example Item Response Function 
Polytomous Item
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Exhibit 14.1 contains a plot of the empirical and theoretical item 
response functions for a dichotomous item. In the plot, the hori-
zontal axis represents the proficiency scale, and the vertical axis 
represents the probability of a correct response. The solid curve 
is the theoretical curve based on the estimated item parameters. 
The centers of the small circles represent the empirical propor-
tions correct. The size of the circles is proportional to the sum of 
the posteriors at each point on the proficiency scale for all of 
those who received the item; this is related to the number of 
respondents contributing to the estimation of that empirical pro-
portion correct. Exhibit 14.2 contains a plot of the empirical and 
theoretical item response functions for a polytomous item. As for 
the dichotomous item plot above, the horizontal axis represents 
the proficiency scale, but the vertical axis represents the probabil-
ity of having a response fall in a given score category. The inter-
pretation of the small circles is the same as in Exhibit 14.1. For 
items where the model fits the data well, the empirical and theo-
retical curves are close together.

14.2.4 Scaling Mathematics and Science Domains and 
Content Areas

In order to estimate student proficiency scores in TIMSS 1999 for 
the subject domains of mathematics and science, all items in each 
subject domain were calibrated together. This approach was cho-
sen because it produced the best summary of student proficiency 
across the whole domain for each subject. Treating the entire 
mathematics or science item pool as a single domain maximizes 
the number of items per respondent, and the greatest amount of 
information possible is used to describe the proficiency distribu-
tion. This was found to be a more reliable way to compare profi-
ciency across countries than to make a scale for each of the content 
areas such as algebra, geometry, etc., and then form a composite 
measure of mathematics by combining the content area scales. 
The domain-scaling approach was also found to be more reliable 
for assessing change from TIMSS 1995 to TIMSS 1999. 

A disadvantage of this approach is that differences in content 
scales may be underemphasized as they tend to regress toward 
the aggregated scale. Therefore, to enable comparisons of stu-
dent proficiency on content scales, TIMSS provided separate 
scale scores of each content area in mathematics and science. If 
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each content area is treated separately when estimating item 
parameters, differential profiles of content area proficiency can 
be examined, both across countries and across subpopulations 
within a country.

14.2.5 Omitted and Not-Reached Responses.

Apart from missing data on that by design were not administered 
to a student, missing data could also occur because a student did 
not answer an item, whether because the student did not know 
the answer, omitted it by mistake, or did not have time to attempt 
the item. In TIMSS 1999, not-reached items were treated differ-
ently in estimating item parameters and in generating student 
proficiency scores. In estimating the values of the item parame-
ters, items that were considered not to have been reached by stu-
dents were treated as if they had not been administered. This 
approach was optimal for parameter estimation. However, since 
the time allotment for the TIMSS tests was generous, and enough 
for even marginally able respondents to complete the items, not-
reached items were considered to have incorrect responses when 
student proficiency scores were generated. 

14.2.6 Proficiency Estimation Using Plausible Values

Most cognitive skills testing is concerned with accurately assessing 
the performance of individual respondents for the purposes of 
diagnosis, selection, or placement. Regardless of the measure-
ment model used, classical test theory or item response theory, 
the accuracy of these measurements can be improved - that is, the 
amount of measurement error can be reduced - by increasing the 
number of items given to the individual. Thus, it is common to 
see achievement tests designed to provide information on indi-
vidual students that contain more than 70 items. Since the uncer-
tainty associated with each θ in such tests is negligible, the 
distribution of θ or the joint distribution of θ with other variables 
can be approximated using individual θ’s. 

For the distribution of proficiencies in large populations, how-
ever, more efficient estimates can be obtained from a matrix-sam-
pling design like that used in TIMSS 1999. This design solicits 
relatively few responses from each sampled respondent while 
maintaining a wide range of content representation when 
responses are aggregated across all respondents. With this 
approach, however, the advantage of estimating population char-
acteristics more efficiently is offset by the inability to make pre-
cise statements about individuals. The uncertainty associated with 
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individual θ estimates becomes too large to be ignored. In this sit-
uation, aggregations of individual student scores can lead to seri-
ously biased estimates of population characteristics (Wingersky, 
Kaplan, & Beaton, 1987).

Plausible values methodology was developed as a way to address 
this issue by using all available data to estimate directly the char-
acteristics of student populations and subpopulations, and then 
generating imputed scores or plausible values from these distri-
butions that can be used in analyses with standard statistical soft-
ware. A detailed review of plausible values methodology is given 
in Mislevy (1991)3.

The following is a brief overview of the plausible values approach. 
Let y represent the responses of all sampled students to back-
ground questions or background data of sampled students col-
lected from other sources, and let θ represent the proficiency of 
interest. If θ were known for all sampled students, it would be 
possible to compute a statistic t(θ,y) - such as a sample mean or 
sample percentile point - to estimate a corresponding population 
quantity T.

Because of the latent nature of the proficiency, however, θ values 
are not known even for sampled respondents. The solution to 
this problem is to follow Rubin (1987) by considering θ as “miss-
ing data” and approximate t(θ,y) by its expectation given (x,y), 
the data that actually were observed, as follows:

(7)

It is possible to approximate t* using random draws from the con-
ditional distribution of the scale proficiencies given the student’s 
item responses xj, the student’s background variables yj, and 
model parameters for the student. These values are referred to as 
imputations in the sampling literature, and as plausible values in 
large-scale surveys such as NAEP, NALS, and IALLS. The value of 
θ for any respondent that would enter into the computation of t 
is thus replaced by a randomly selected value from his or her con-
ditional distribution. Rubin (1987) proposed repeating this pro-

3. Along with theoretical justifications, Mislevy presents comparisons with standard pro-
cedures, discusses biases that arise in some secondary analyses, and offers 
numerical examples.

t* x y,( ) E t θ y,( ) x y,[ ]

t θ y,( )p  θ x y,( ) θ.d∫=

=
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cess several times so that the uncertainly associated with 
imputation can be quantified by “multiple imputation.” For 
example, the average of multiple estimates of t, each computed 
from a different set of plausible values, is a numerical approxima-
tion of t* of the above equation; the variance among them reflects 
uncertainty due to not observing θ. It should be noted that this 
variance does not include the variability of sampling from 
the population.

Note that plausible values are not test scores for individuals in the 
usual sense, but rather are imputed values that may be used to 
estimate population characteristics correctly. When the underly-
ing model is correctly specified, plausible values will provide con-
sistent estimates of population characteristics, even though they 
are not generally unbiased estimates of the proficiencies of the 
individuals with whom they are associated4.

Plausible values for each respondent j are drawn from the condi-
tional distribution P(θj|xj,yj,Γ,Σ),where Γ is a matrix of regression 
coefficients for the background variables, and Σ is a common 
variance matrix for residuals. Using standard rules of probability, 
the conditional probability of proficiency can be represented as

(8)

where θj is a vector of scale values, P(xj|θj) is the product over the 
scales of the independent likelihoods induced by responses to 
items within each scale, and P(θj|yj,Γ,Σ) is the multivariate joint 
density of proficiencies of the scales, conditional on the observed 
value yj of background responses and parameters Γ and Σ. Item 
parameter estimates are fixed and regarded as population values 
in the computations described in this section.

14.2.7 Conditioning

A multivariate normal distribution was assumed for P(θj|yj,Γ,Σ), 
with a common variance, Σ, and with a mean given by a linear 
model with regression parameters, Γ. Since in large-scale studies 
like TIMSS there are many hundreds of background variables, it 
is customary to conduct a principal components analysis to 

4. For further discussion, see Mislevy, Beaton, Kaplan, and Sheehan (1992).

P xij 1 θk ai bi ci,,,=( ) ci
1 ci–( )

1 1.7– ai θk bi–( )( )exp+
-------------------------------------------------------------+=



Scaling Methodology and Procedures for the TIMSS Mathematics and Science Scales

247

reduce the number to be used in Γ. Typically, components repre-
senting 90% of the variance in the data are selected. These prin-
cipal components are referred to as the conditioning variables 
and denoted as y c. The following model is then fit to the data.

(9)

where ε is normally distributed with mean zero and variance Σ. As 
in a regression analysis, Γ is a matrix each of whose columns is the 
effects for each scale and Σ is the matrix of residual variance 
between scales.

Note that in order to be strictly correct for all functions Γ of θ, it 
is necessary that p(θ |y) be correctly specified for all background 
variables in the survey. In TIMSS 1999, however, principal compo-
nent scores based on nearly all background variables were used. 
Those selected variables were chosen to reflect high relevance to 
policy and to education practices. The computation of marginal 
means and percentile points of θ for these variables is nearly opti-
mal. Estimates of functions Γ involving background variables not 
conditioned on in this manner are subject to estimation error 
due to mis-specification. The nature of these errors was discussed 
in detail in Mislevy (1991). 

The basic method for estimating Γ and Σ with the Expectation 
and Maximization (EM) procedure is described in Mislevy (1985) 
for a single scale case. The EM algorithm requires the computa-
tion of the mean, θ, and variance, Σ, of the posterior distribution 
in (4). For the multiple content area scales of TIMSS 1999, the 
computer program CGROUP (Thomas, 1993) was used. The pro-
gram implemented a method to compute the moments using 
higher-order asymptotic corrections to a normal approximation. 
Case weights were employed in this step.

14.2.8 Generating Proficiency Scores

After completing the EM algorithm, the plausible values are 
drawn in a three-step process from the joint distribution of the 
values of Γ for all sampled. First, a value of Γ is drawn from a nor-
mal approximation to P(Γ,Σ|xj,yj) that fixes Σ at the value  (Tho-
mas, 1993). Second, conditional on the generated value of Γ 
(and the fixed value of Σ= ), the mean θ, and variance Σj

p of the 
posterior distribution in equation (2) are computed using the 
methods applied in the EM algorithm. In the third step, the pro-

θ Γ'yc ε,+=

ˆ Σ 

ˆ Σ 



248

TIMSS 1999 • Technical Report • Chapter 14

ficiency values are drawn independently from a multivariate nor-
mal distribution with mean θ and variance Σj

p. These three steps 
are repeated five times, producing five imputations of θ for each 
sampled respondent.

For respondents with an insufficient number of responses, the Γ 
and Σs described in the previous paragraph were fixed. Hence, 
all respondents - regardless of the number of items attempted - 
were assigned a set of plausible values for the various scales.

The plausible values could then be employed to evaluate equa-
tion (1) for an arbitrary function T as follows:

1. Using the first vector of plausible values for each respondent, 
evaluate T as if the plausible values were the true values of θ. 
Denote the result T1.

2. As in step 1 above, evaluate the sampling variance of T, or 
Var(T1,), with respect to respondents’ first vectors of plausible 
values. Denote the result Var1.

3. Carry out steps 1 and 2 for the second through fifth vectors of 
plausible values, thus obtaining Tu and Varu for u=2, . . ., M, 
where M is the number of imputed values.

4. The best estimate of T obtainable from the plausible values is 
the average of the five values obtained from the different sets 
of plausible values:

(10)

5. An estimate of the variance of T. is the sum of two compo-
nents: an estimate of Var(Tu) obtained as in step 4 and the 
variance among the Tus:

(11)

The first component in Var(T.) reflects uncertainty due to sam-
pling respondents from the population; the second reflects 
uncertainty due to the fact that sampled respondents’ θs are not 
known precisely, but only indirectly through x and y.

T.

Tu
u
∑

5
-------------=

Var T.( )
Varu

u
∑

M
------------------ 1 M 1–

+( )
Tu T.–( )2

u
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M 1–
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14.2.9 Working with Plausible Values

Plausible values methodology was used in TIMSS 1999 to increase 
the accuracy of estimates of the proficiency distributions for various 
subpopulations and for the TIMSS population as a whole. This 
method correctly retains the uncertainty associated with proficiency 
estimates for individual respondents by using multiple imputed pro-
ficiency values rather than assuming that this type of uncertainty is 
zero - a more common practice. However, retaining this component 
of uncertainty requires that additional analytic procedures be used 
to estimate respondents’ proficiencies, as follows.

If θ values were observed for sampled respondents, the statistic (t-
T)/U1/2 would follow a t-distribution with d degrees of freedom. 
Then the incomplete-data statistic (t*-T)/(Var(t*))1/2 is approxi-
mately t-distributed, with degrees of freedom (Johnson & Rust, 
1993) given by

(12)

where d is the degrees of freedom, and f is the proportion of 
total variance due to not observing θ values:

(13)

where BM is the variance among M imputed values and VM is the 
final estimate of the variance of T. When B is small relative to U*, 
the reference distribution for incomplete-data statistics differs lit-
tle from the reference distribution for the corresponding com-
plete-data statistics. If, in addition, d is large, the normal 
approximation can be used instead of the t-distribution.

For k-dimensional t, such as the k coefficients in a multiple 
regression analysis, each U and U* is a covariance matrix, and B is 
an average of squares and cross-products rather than simply an 
average of squares. In this case, the quantity (T-t*)V-1 (T-t*)’ is 
approximately F distributed with degrees of freedom equal to k 
and ν, with ν defined as above but with a matrix generalization 
of fM 

(14)

v 1
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2
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A chi-square distribution with k degrees of freedom can be used 
in place of f for the same reason that the normal distribution can 
approximate the t distribution.

Statistics t*, the estimates of ability conditional on responses to 
cognitive items and background variables, are consistent esti-
mates of the corresponding population values T, as long as back-
ground variables are included in the conditioning variables. The 
consequences of violating this restriction are described by Beaton 
and Johnson (1990), Mislevy (1991), and Mislevy and Sheehan 
(1987). To avoid such biases, the TIMSS 1999 analyses included 
nearly all background variables.

14.3 Implementing the 
TIMSS 1999 Scaling 
Procedures

This section describes how the IRT scaling and plausible value 
methodology was applied to the TIMSS 1999 data. This consisted 
of three major tasks, as follows.

Re-scaling of the 1995 TIMSS data. TIMSS in 1995 also made use 
of IRT scaling with plausible values (Adams, Wu, and Macaskill, 
1997). The scaling model, however, relied on the one-parameter 
Rasch model rather than the more general two- and three-param-
eter models used in 1999. Since a major goal of TIMSS 1999 was 
to measure trends since 1995 by comparing results from both 
data collections, it was important that both sets of data be on the 
same scale. Accordingly it was decided as a first step to rescale the 
1995 data using the scaling models from 1999.

Scaling the 1999 data and linking to the 1995 data. Since the 
achievement item pools used in 1995 and 1999 had about one-
third of the items in common, the scaling of the 1999 data was 
designed to place both data sets on a common IRT scale. 
Although the common items administered in 1995 and 1999 
formed the basis of the linkage, all of the items used in each data 
collection were included in the scaling since this increases the 
information for proficiency estimation and reduces measure-
ment error. Item-level linking of two or more scales in this way is 
one of the most powerful methods of scale linking and is well 
suited to IRT methods. This is one of the benefits of using the 
IRT scaling procedures. 
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Creating IRT scales for mathematics and science content areas 
for 1995 and 1999 data. IRT scales were also developed for each 
of the content areas in mathematics and science for both 1995 
and 1999. Because there were few items common to the two 
assessments, and because of some differences in their composi-
tion, the 1995 and 1999 scales were not linked, but rather each 
was established independently.

14.3.1 Re-scaling of the 1995 TIMSS Data

The re-scaling of 1995 TIMSS followed, as much as possible, the 
procedures used in the original 1995 analyses, while using two- 
and three-parameter scaling models in place of the more restric-
tive one-parameter Rasch model. Item parameter estimates were 
obtained using an “international calibration sample” that con-
sisted of random samples of 600 eighth-grade students from each 
of the 37 countries that participated in TIMSS in 1995 (plus 300 
from Israel). The calibration samples were drawn with probability 
proportional to size of sampling weight in each country, so that 
the sample accurately reflected the distribution of students in the 
population. The 1995 estimated item parameters for mathemat-
ics may be found in Exhibit E.1 in Appendix E and for science in 
Exhibit E.2.

Using the re-estimated item parameters from the two- and three-
parameter and polytomous IRT models, the conditioning analy-
ses were completed, with a conditioning model similar to the one 
used in 1995. Following that approach, and separately within 
each country, responses to background variables were summa-
rized through a principal components analysis. Enough principal 
components were created to account for at least 90% of the vari-
ability in the original set of background variables. In addition to 
the principal components, several background variables were 
explicitly included in the conditioning model. These included 
student gender and the school mean on a simple Rasch based 
measure of student achievement in the subject (mathematics or 
science) being scaled. Additionally, the conditioning for mathe-
matics included the Rasch score for science, and the condition-
ing for science, the score for mathematics. Exhibit 14.3 shows the 
total number of conditioning variables used in the re-scaling for 
each country.
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Exhibit 14.3 Number of Conditioning Variables for TIMSS 1995 Re-scaling

Country    Sample size
Number of 
Principal 

Components

Number of 
conditioning 

variables

Australia 12852 317 648

Austria 5786 361 735

Belgium (Flemish) 5662 473 952

Belgium (French) 4883 425 858

Bulgaria 3771 2 12

Canada 16581 348 711

Colombia 5304 357 723

Czech Republic 6672 540 1089

Cyprus 5852 358 731

Germany 5763 484 976

Denmark 4370 434 876

Spain 7596 349 707

France 6014 367 745

England 3579 261 527

Greece 7921 556 1119

Hong Kong 6752 319 646

Hungary 5978 524 1057

Ireland 6203 360 726

Iran, Islamic Rep. 7429 328 664

Iceland 3730 492 997

Israel 1415 308 621

Japan 10271 257 520

Korea, Rep. of 5827 346 697

Kuwait 1655 303 610

Lithuania 5056 540 1088

Latvia (LSS) 4976 477 962

Netherlands 4084 451 915

Norway 5736 340 691

New Zealand 6867 352 712

Philippines 11847 379 766

Portugal 6753 413 838

Romania 7471 572 1153

Russian Federation 8160 563 1131

Scotland 5776 220 448

Singapore 8285 334 675

Slovak Republic 7101 521 1050

Slovenia 5606 475 964

Sweden 8855 595 1201

Switzerland 11722 358 727

Thailand 11643 351 710

United States 10973 350 712

South Africa 9792 387 793
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Plausible values generated by the conditioning program are ini-
tially on the same scale as the item parameters used to estimate 
them. This scale metric is generally not useful for reporting pur-
poses since it is somewhat arbitrary. Instead, a reporting metric 
that has desirable properties is usually selected. In the original 
1995 scaling, a metric was chosen for reporting TIMSS results 
such that the combined proficiency distribution for seventh and 
eighth grade students had a mean of 500 and a standard devia-
tion of 100 (Gonzalez, 1997).

In the re-scaling of the 1995 data, the transformation procedures 
to establish the reporting metric were slightly different. Since the 
1999 assessment consisted of eighth-grade students only (not 
both seventh- and eighth-grade students as in 1995), and since a 
major goal of the re-scaling was to establish a trend line to 1999, a 
metric was chosen for the re-scaled 1995 data that had desirable 
properties for the proficiency distribution of eighth-grade stu-
dents. Accordingly, the scale was set so that the distribution of 
eighth-grade students in 1995 had a mean of 500 and a standard 
deviation of 100. The same metric transformation was applied to 
the re-scaled seventh- grade data from 1995. This procedure was 
followed for both the mathematics and science scales. Extreme 
scale values were truncated, i.e., plausible values below 5 were set 
to 5 and plausible values above 995 were set to 995.

Setting the scale metric as described above produces slightly 
lower means and slightly higher standard deviations than the 
original 1995 eighth-grade results. This is solely the result of the 
decision to base the metric on the eighth-grade distribution only 
rather than on the combined seventh- and eighth-grade distribu-
tions. Comparisons between the original and re-scaled 1995 profi-
ciency scores are not appropriate because of this difference in 
the scale metric.

14.3.2 Scaling the 1999 Data and Linking to the 1995 Data 

The linking of the 1995 and 1999 scales was conducted at the 
mathematics and science domain levels only, since there were not 
enough common items to enable reliable linking within each 
mathematics or science content area. As may be seen from 
Exhibit 14.4, about one-third of the items were common to both 
assessments (48 items in mathematics and 48 in science), which 
was enough to provide a reliable link between the 1995 and 
1999 assessments.
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Exhibit 14.4 Numbers of items Common and Unique to TIMSS 1995 and TIMSS 1999

Calibration samples of 1,000 students per country per assessment 
were selected from each of the 25 countries that participated in 
both assessments, using the same method as in 1995. All 274 of 
the mathematics items (common items and items unique to one 
or the other assessment) were scaled together to provide new 
item parameter estimates that fit both calibration samples (1995 
and 1999). The same procedure was followed for all 248 of the 
science items. Estimated item parameters from this joint 1995-
1999 scaling may be found in Exhibit E.3 in Appendix E for 
mathematics and in Exhibit E.4 for science.

These item parameters estimates were used to generate plausible 
values for all of the 38 TIMSS 1999 countries, including those 
that participated only in 1999.5 A new set of principal compo-
nents was calculated for the TIMSS 1999 data in each country for 
use in conditioning. Exhibit 14.5 shows the total number of con-
ditioning variables used for the TIMSS 1999 for each country. 
Plausible values were generated for all countries for both assess-
ments using the new, jointly estimated item parameters. 

Subject Items TIMSS 1995 TIMSS 1999

Mathematics Unique to TIMSS 1995 111

Unique to TIMSS 1999 115

Common to both TIMSS 1995 and TIMSS 1999 48

Total 159 163

Grand Total for Mathematics 274

Science Unique to TIMSS 1995 94

Unique to TIMSS 1999 106

Common to both TIMSS 1995 and TIMSS 1999 48

Total 142 154

Grand Total for Science 248

5. In addition to its eighth-grade sample, Chile also surveyed a seventh-grade sample 
that was scaled with the 1999 item parameters.
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Exhibit 14.5 Number of Variables and Principal Components for Conditioning 

TIMSS 1999

Country    Sample size
Total number of 

conditioning 
variables

Total number
of principal 

components only

Australia 4032 374 348

Belgium (Flemish) 5259 485 479

Bulgaria 3272 582 575

Canada 8770 385 364

Chile 5907 410 405

Chinese Taipei 5772 379 374

Cyprus 3116 394 385

Czech Republic 3453 557 551

England 2960 298 292

Finland 2920 548 538

Hong Kong, SAR 5179 392 384

Hungary 3183 584 578

Indonesia 5848 403 397

Iran, Islamic Rep. 5301 406 400

Israel 4195 405 398

Italy 3328 380 374

Japan 4745 362 354

Jordan 5052 415 409

Korea, Rep. of 6114 408 388

Latvia (LSS) 2873 522 514

Lithuania 2361 342 336

Morocco 5402 681 675

Moldova 3711 599 593

Macedonia, Rep. of 4023 576 569

Malaysia 5577 386 381

Netherlands 2962 437 430

New Zealand 3613 338 332

Philippines 6601 422 415

Romania 3425 597 589

Russian Federation 4332 657 608

Singapore 4966 370 365

Slovak Rep. 3497 408 401

South Africa 8146 441 426

Slovenia 3109 584 578

Thailand 5732 398 390

Tunisia 5051 418 413

Turkey 7841 449 405

United States 9072 409 392
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The final step in the scaling of the data was to locate both the 
1995 and the 1999 data on the same scale. This was done by cal-
culating transformation constants that matched the means and 
standard deviations of the re-scaled 1995 plausible values, which 
were on the required scale, with the means and standard devia-
tions of the jointly-scaled 1995-1999 plausible values for the same 
set of countries, which were on an independent scale. This proce-
dure was used for the countries that participated in both assess-
ments.6 The transformation constants, which were applied as 
A*θ+B, are shown in Exhibit 14.6 for mathematics and science.

Exhibit 14.6 Transformation Constants for TIMSS 1999 Mathematics and Science 
Domain Scales

These linear transformations were then applied to the plausible 
values of the TIMSS 1999 students to place their results on the 
same scale as the 1995 data. If the transformation is accurate it 
should produce practically identical means in each country for 
both the re-scaled 1995 plausible values and the plausible values 
based on the joint 1995-1999 scaling. Exhibit 14.7 presents a com-
parison of the results for mathematics from both sets of data, and 
Exhibit 14.8 shows the same results for science. Both exhibits 
indicate that the differences between the proficiency means of 
the re-scaled 1995 data and the jointly-scaled 1995-1999 data are 
very small for every country. They are on average less than 20% of 
the standard error of measurement, implying that no systematic 
errors exist and that the differences can be considered ignorable.

6. Because they did not satisfy all sampling guidelines in 1995, Israel, South Africa, and 
Thailand were omitted from the calculation of transformation constants.

TIMSS 1995 and TIMSS 1999 A B

Mathematics 99.593 510.169

Science 102.188 508.961
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Exhibit 14.7 Comparison of 1995 TIMSS Reanalysis and Univariate Linking

Mathematics Scale

Country
Mean from 

1995
Re-Scaling

Mean for 1995 
from Joint 
1995-1999 

Scaling

Difference

Singapore 609 609 0.0

Korea 581 581 0.5

Hong Kong, SAR 569 569 0.4

Japan 581 581 0.2

Belgium (Flemish) 550 549 -1.1

Netherlands 529 529 0.0

Hungary 527 526 -0.4

Canada 521 520 -1.0

Slovenia 531 530 -0.9

Russian Federation 524 523 -0.4

Australia 519 518 -0.5

Czech Republic 546 544 -1.1

Bulgaria 527 527 0.0

Latvia (LSS) 488 489 0.5

United States 492 492 -0.4

England 498 496 -1.3

New Zealand 501 501 -0.3

Lithuania 472 472 0.2

Italy 491 492 0.7

Cyprus 468 468 0.2

Romania 474 474 0.6

Iran, Islamic Rep. 418 423 4.3

Mean: 518.750 518.750

Standard Deviation: 92.363 92.363
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Exhibit 14.8 Comparison of 1995 TIMSS Reanalysis and Univariate Linking
Science Scale

14.3.3 Creating IRT Scales for Mathematics and Science Content 
Areas for 1995 and 1999 Data 

The primary function of the IRT scales in the mathematics and 
science content areas is to portray student achievement in each 
country in terms of a profile of relative performance in each 
area. Such profiles should, for example, show countries where 
performance in algebra was relatively better than in geometry, or 
in life science than in chemistry. Although it would have been 
desirable to establish a link from 1995 and 1999 in each content 
area, there were not enough common items in the two assess-
ments to do this reliably. However, the numbers of items in each 

Country
Mean from 

1995
Re-Scaling

Mean for 
1995 from 

Joint 
1995-1999 

Scaling

Difference

 Australia 527 526 0.0

Belgium (Flemish) 533 533 0.0

 Bulgaria 545 544 -1.0

Canada 514 516 1.9

Cyprus 452 452 0.2

 Czech Republic 555 553 -1.5

 England 533 533 -0.8

Hong Kong, SAR 510 512 1.9

 Hungary 537 536 -0.5

Iran, Islamic Rep. 463 464 0.7

 Italy 497 500 3.2

 Japan 554 552 -2.5

 Korea, Rep. of 546 545 -0.8

 Latvia (LSS) 476 475 -0.8

Lithuania 464 465 1.3

 Netherlands 541 542 1.0

New Zealand 511 512 1.2

 Romania 471 471 0.3

 Russian Federation 523 522 -0.9

 Singapore 580 578 -2.4

 Slovenia 541 538 -2.9

United States 513 515 2.7

Mean: 517.511 517.511

Standard Deviation: 91.587 91.587



Scaling Methodology and Procedures for the TIMSS Mathematics and Science Scales

259

content area were considered sufficient to develop content area 
scales for each assessment separately. The five content areas in 
mathematics and six areas in science for which scales were devel-
oped are presented in Exhibit 14.9.

Exhibit 14.9 Number of Items in Mathematics and Science Content Areas (1995 and 
1999 Combined)

The calibration samples used for the joint 1995-1999 scaling were 
also used to estimate the item parameters for each of the content 
area scales (shown in Exhibit E.5 in Appendix E for mathematics 
and in Exhibit E.6 for science). The principal components pro-
duced for the conditioning of the joint 1995-1999 mathematics 
and science domain scales were used for the 1999 content area 
plausible value analyses as well. Plausible values were generated 
for all countries for both assessments using the new, jointly esti-
mated item parameters under multivariate conditions. 

The indeterminacy of the content area scales in mathematics was 
resolved by setting the mean of each mathematics content area 
scale over all of the 38 TIMSS 1999 countries to be the same as 
the mean of the domain scale for mathematics. The same 
approach was taken for science. The transformation constants 
used to do this are presented in Exhibit 14.10. 

It should be noted that since there were far fewer items in each 
content area scale than in the domain scales (for example, 57 
algebra items compared with 274 mathematics items), a relatively 
greater proportion of the variance in the content area scales was 
due to measurement error. In the scaling, the total variance for 
content area scales and domain scales was set to be equal, and 

Mathematics Content Areas No. of 
Items Science Content Areas No. of 

Items

Fractions/Number 104 Earth Science 34

Measurement 39 Life Science 70

Data Representation 33 Physics 64

Geometry 41 Chemistry 39

Algebra 57 Environmental and Resource Issues 17

Scientific Inquiry and the Nature of 
Science 12

Total 274 Total 236



260

TIMSS 1999 • Technical Report • Chapter 14

therefore the measurement error plays a relatively greater role in 
the variance of the content area scales. This implies that the con-
tent area scale means of each country tend to be regressed 
toward the grand mean, and that the regression is more notice-
able for very high- or very low-achieving countries. 

Exhibit 14.10 Transformation Constants for TIMSS 1999 Content Area Scales 

14.4 Summary Item Response Theory was used to model the TIMSS achieve-
ment data. In order to better monitor trends in mathematics and 
science achievement, TIMSS used 2- and 3-parameter IRT, and 
plausible-value technology to re-analyze the 1995 achievement 
data, and analyze the 1999 achievement data. The procedures 
used to link the 1995 and 1999 achievement data were described.

TIMSS 1999 A B

Mathematics Scales

Algebra 82.454 511.536

Data Representation 71.222 506.175

Fractions and Number 85.000 511.931

Geometry 65.933 506.741

Measurement 74.404 511.959

Science Scales

Chemistry 64.553 505.616

Earth Science 69.688 508.543

Life Science 78.839 507.671

Physics 78.111 507.558

Environmental and Resource Issues 64.201 503.668

Scientific Inquiry and the Nature of Science 48.504 516.944
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